Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230220.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230220-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230220.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230220.tar.gz
Algorithm Hash digest
SHA256 6b10f1245dde6b67f5520a6842eb891f8fbc35e8cc4f33eab44ac44276a21ae2
MD5 29d58e6412e75e11963329845bd45d6e
BLAKE2b-256 a7e85bad309b9c90080e10db9a459d90f3a672a671ac190851bd8993a1cce7fe

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230220-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230220-py3-none-any.whl
Algorithm Hash digest
SHA256 02305d587bd1f2994612c54359041a3556c3bcf647802e39baec10926d1840bf
MD5 4b1a38c309de22d9c651e39618fc6499
BLAKE2b-256 9691858d8800031a99a04306ed55332cad1dc5159a004eacb5f1991ad94abc5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page