Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230221.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230221-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230221.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230221.tar.gz
Algorithm Hash digest
SHA256 9fae73fd858b1dbb664e53db7ab01b88ce71f5bfc33add91c0599586bf400852
MD5 8471fdab3ecd128c3f1561f84ead0fc3
BLAKE2b-256 96f9cfb77294b9f938769d899936c6e18f1385627a202f92bef8f50f55c7dfad

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230221-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230221-py3-none-any.whl
Algorithm Hash digest
SHA256 3c152b565639d65a5eacf143126feb88e1b166516ac8545cd7979b65ffbe0fea
MD5 8db00af7e7bcc7d2cfdf04d288ac4ab5
BLAKE2b-256 9c4445106d99b122d8aed3a3788940af7c777ab19a5f901709c6951f9769d72b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page