Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230222.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230222-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230222.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230222.tar.gz
Algorithm Hash digest
SHA256 397e9c1a93b140145a9adbc871f6987e68efbb94d2190ccfa7a6fc77ca361440
MD5 585177dbe1648806a97fd26468a47793
BLAKE2b-256 96355a0eaf206aff6c2937880fbaecdb01c60ffd480663b8a8077f16e9467ca7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230222-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230222-py3-none-any.whl
Algorithm Hash digest
SHA256 8d624f400835e92dc226a8f9d1207c552bc9ac8a9a8f8da83d56b774a359b68e
MD5 f75f32d4c97acbb5e39f20d0b094300e
BLAKE2b-256 b871952e5d2f5243de99e3124a3c4dc7052e8fe518af72be6b439e5ce1848b42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page