Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230223.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230223-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230223.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230223.tar.gz
Algorithm Hash digest
SHA256 06f100182af360f8a2780c0344d14d02c1305d776101ac8fd1a54b8ab09bddb9
MD5 76d872680d1f5371fb73d4f411953842
BLAKE2b-256 a056bf031e4d622871d30dc6086636c5bcd701572850d1f8cb5a81e4f932547d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230223-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230223-py3-none-any.whl
Algorithm Hash digest
SHA256 264610e916517c5611b79c9d05e3b64264b19cbd3ca2d9d8f5a57fea0d1d51c0
MD5 f80d74411d395c8649db29cd014be487
BLAKE2b-256 e08818cd4532cf40354026535b8ea8ed116d39f7713fbe2179dc790fc9202143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page