Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230224.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230224-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230224.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230224.tar.gz
Algorithm Hash digest
SHA256 f280c43334da477af8a4d3671f653d4b867f6b66611dbdf1e40d6bfbf2570aac
MD5 ba6df95b778cc4cd5707062e0de8f629
BLAKE2b-256 a5a4912f821a53186452c89969381b1821cb9f49e89c1d1bc42c87d9c40bef98

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230224-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230224-py3-none-any.whl
Algorithm Hash digest
SHA256 d391482f24f05a1a9a1e1d6ce3341a86f2eb8a700069b3728999a6701202b8f5
MD5 4944671420c21d04c7e108c8043b769a
BLAKE2b-256 22056cff754ac821288b31afd87e28e71276a752c2237844b9cabcf9c1fa015c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page