Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230225.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230225-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230225.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230225.tar.gz
Algorithm Hash digest
SHA256 f6d92dbe5fd59df9c57072977eab50d2870ea30555dcf7202863afa334d7e7c2
MD5 0f3cf870f4c23cfbd4ef57e10b453d7a
BLAKE2b-256 aca9f416d605741a88d6ded665b2e04f917d63d4b452d5d0cf539a8cd6c4e088

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230225-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230225-py3-none-any.whl
Algorithm Hash digest
SHA256 76c5c2c9b00cb9fd7964baa38d6f2ad8ef2a96a5a7ddcd10aa0e47cc50e76347
MD5 7bd94b6a9074aa690057df3540a7f557
BLAKE2b-256 5d23ff166964a5e2ff151218a3038a23942fba60e4c4bbf62a8f04fc69b2dbf1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page