Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230226.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230226-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230226.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230226.tar.gz
Algorithm Hash digest
SHA256 e310bc2bf804b08defa1dc6a67fbb6b1c1989c328dfccce7f4ace2cfbc16ab6a
MD5 c02f75cf1f61fbc98bb9be2b31c86880
BLAKE2b-256 7cae6629a2e45b0f234d41c63a55872723d2bad40da78ae45d140178c4e1d892

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230226-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230226-py3-none-any.whl
Algorithm Hash digest
SHA256 993ea6ff20e4c0c276553cd61540977eede7017e9f29bb87f6c54e844113db46
MD5 47c121f72228019e1cca834b184a3ddc
BLAKE2b-256 44271af794376d9079fc1ea7168f78c95ee84b75c4073617db7b58a47042a260

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page