Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230227.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230227-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230227.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230227.tar.gz
Algorithm Hash digest
SHA256 1242edb1f2c6ab44f9b0698078ed91843af79a7b886c2fa290c801b32f093b56
MD5 1b2f51c0686e1e7bc595d8a68338cee8
BLAKE2b-256 3d4051ee9af365832fdeebcc23ce84284164296ac08decc1666ace03294f687e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230227-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230227-py3-none-any.whl
Algorithm Hash digest
SHA256 1c152486c1414bb134f42cee3ae89b486e4e4b94ae696627db122a0349794c19
MD5 0a042085976c704bd79c8fec74c18c93
BLAKE2b-256 9cdb8534ec975f02b316cb05ef20cf7158def9ac561fb0f6662c9cebb91a48b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page