Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230228.tar.gz (46.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230228-py3-none-any.whl (65.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230228.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230228.tar.gz
Algorithm Hash digest
SHA256 55191a5ac10222c896a4a5ae819b87cb68ba0ad8abd2df806566fb9b62f57048
MD5 73010304bd9fe49b42c580e8f9bbb28b
BLAKE2b-256 a6887299f4121e793b3b61d1841979048a2916485303fc759eb84078e18d882d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230228-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230228-py3-none-any.whl
Algorithm Hash digest
SHA256 91efd90c193436a7c2a1e0f45b199b4d053a654dab828f79e3891d2360dd8677
MD5 0899f076d0513a1176a8ded154f8e95b
BLAKE2b-256 a8fceb409c514fd13fc62213eff920463d0f47e824507bf8b6ca25b90334c0e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page