Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230301.tar.gz (47.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230301-py3-none-any.whl (66.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230301.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230301.tar.gz
Algorithm Hash digest
SHA256 c1b6a32d985328947980826fb5d194db702b2cb41c724a06529780f239d5956a
MD5 8407dda2bc32ef7a65dad81b4a5419d7
BLAKE2b-256 588977d9ee4fc2ff35de83baf4fae5162e9a4db73c60e6a9bdc09a8bf47e9c3b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230301-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230301-py3-none-any.whl
Algorithm Hash digest
SHA256 81978d8382391093f8d6b1e310c5315ece8d439fd47b5ec65d9eb8dfc4cae280
MD5 eff1913e14439ebeccc777a2f5591ffd
BLAKE2b-256 7b8ad1c0286b8bfd24e11254b0002f4b2ec5a6d9a51c9609b4df11e0a92abadd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page