Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230302.tar.gz (47.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230302-py3-none-any.whl (66.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230302.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230302.tar.gz
Algorithm Hash digest
SHA256 10eb2dd7d9608876cef3d1fc424b4bc47daea0ae044f99e63c00718aee1c1a57
MD5 45397f1ee7f3ce4099908059018f5d60
BLAKE2b-256 c78f0680673f5941faa179fa75b325cb10c5412aa325cdbfccd0edf3525b8a0e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230302-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230302-py3-none-any.whl
Algorithm Hash digest
SHA256 0b9b566f34c36190aeb445d2d5319130ea30a43f5d51447c099d2ea4716d185e
MD5 7251afb3a41740538a71ad91354a5d9b
BLAKE2b-256 e24f20369d74d9c220ab972a95e2ffd34b953b78b994ae944bdf921f5747dfa6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page