Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230303.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230303-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230303.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230303.tar.gz
Algorithm Hash digest
SHA256 08d88cad5632dfb08ce0ac0a8c949dc7621c61dbc76c80377455737c4db0455c
MD5 5380a5e0710041f40e9c7a838f425a46
BLAKE2b-256 c55981e047f726d4a7bc3f6729971b57fce411b772f7f1f1790130d457aff256

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230303-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230303-py3-none-any.whl
Algorithm Hash digest
SHA256 96215e3accea6a4a3d705d76e27192ceb6b13eeb3e00a2fb8ef0d28fd55ce07f
MD5 f2d3b943e5c985ea236e56be40c06549
BLAKE2b-256 b67640eb227b576f87b5d1981dec30a91928511b0f99692db0bd9c5776626b30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page