Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230304.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230304-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230304.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230304.tar.gz
Algorithm Hash digest
SHA256 05778b7d874618766a22d4452424fd8bf4168aa2ce00754fa4dac3b176e81f40
MD5 667f37bff65b5ab103446d10dc332b71
BLAKE2b-256 390d61c3e239687bc60eca065252041cfa14e2278b90d5076d24c581350e344c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230304-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230304-py3-none-any.whl
Algorithm Hash digest
SHA256 0ced6e4861725feb4acb18e96c2a02da781e79e2574046eb0e2943a5cd766262
MD5 2c64765f1ed01a7f0dc1d4ccbefaab65
BLAKE2b-256 042b7e03972bb78a32a15e7b44b5e8aaa0140ad7dde7e991a13557984493b3ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page