Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230305.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230305-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230305.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230305.tar.gz
Algorithm Hash digest
SHA256 7086884c076dbdaa347f9929e3a10c6b825af0290a67370065b7aaa2c7737626
MD5 3fa43fd644c9afb750ec636ca9d30a33
BLAKE2b-256 02e1ad54ec4a77968ba9ecd8339d44e545dbb964b0a64ff9a4bd4ce2d858fe79

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230305-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230305-py3-none-any.whl
Algorithm Hash digest
SHA256 c70cd520355d47f10e4499bd5c368103e689589299e541a7ece7cfb6ab314350
MD5 d6167249f2112097783b420d7da882f2
BLAKE2b-256 3ac47d7f54b7ba08798176e392105cbe48cc3a60d71d4ebd4fd662a1dea5e7d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page