Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230306.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230306-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230306.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230306.tar.gz
Algorithm Hash digest
SHA256 f4a9d4ecb6c5e9ab3dc623529d18aad1faf5e7e80322a8f48b0fa50ac40791ce
MD5 66d727cce761a6dda708f50d53908f8e
BLAKE2b-256 01b22f2d8fc0c4ab1c69a5e2236822aad65fd05546d651303747978d1efbf63f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230306-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230306-py3-none-any.whl
Algorithm Hash digest
SHA256 28d6f552cbe24dcbe15ff2b9ed8ec3320e4f8f649cb5f001b4a757f9b12ee19a
MD5 e6d72a878a7a381766e26b222cb057ad
BLAKE2b-256 483792b338be783782c71e866ab305d73366608373be20a2e3b6972b5bdb7d76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page