Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230307.tar.gz (49.2 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230307-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230307.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230307.tar.gz
Algorithm Hash digest
SHA256 c341e3daf2f9eda91820a399016679d307def4ae233b3a5ded264e7e1076216c
MD5 823bfa9d3ef6c6c5f0a5643d8d530e19
BLAKE2b-256 f1a85b8903ee2410c033191ecc3e0129dda235c951d13bd7ed54183730e4d260

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230307-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230307-py3-none-any.whl
Algorithm Hash digest
SHA256 c4f093375bda752d217ac4a4b18f250662f912bb9c7813189e4b3d3d2bff3438
MD5 14b3678e66f9565000370e517c9dcc32
BLAKE2b-256 800423d9d54eca71ca06b3155c9078841db1d9ca456db84ccd5be051b80420c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page