Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230308.tar.gz (49.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230308-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230308.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230308.tar.gz
Algorithm Hash digest
SHA256 a48f1908c962e20c8c979f40cee15dfbba0d5617a167d012654e2ba6ddbc9e22
MD5 618f1aca367d1d8417bd8e4c4596ed85
BLAKE2b-256 b9826879cb2c0d5dfafd83c23b5c9ed56564aa75dd94558eb9fee2400a0d4f59

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230308-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230308-py3-none-any.whl
Algorithm Hash digest
SHA256 153109a4102e1b25fb2afdc8677786396fe050220dbf9f4384d3f8da5ba88ffa
MD5 a4280f7e3948a86647fd7453e56ea9b8
BLAKE2b-256 c649ffb959504bd0597b57b631fecb40dbe89b4e94dc3196a72f5d66d1a4b394

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page