Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230309.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230309-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230309.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230309.tar.gz
Algorithm Hash digest
SHA256 a74895a6cdc11ef55763f1d5c58f3d5ddbdc7f62311e70b1f6a14f5564450222
MD5 ae7d03d2a2e032081c0d462ad25ab8c7
BLAKE2b-256 60b32e67f68f9a0595955463db7070e1115bfa0e092d541dad93a466e7680093

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230309-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230309-py3-none-any.whl
Algorithm Hash digest
SHA256 5b3a43d7b2cbabc795a21041254799410ce25d70f87a0326c9b76bd903ae726c
MD5 228fd7ce6b9edf1e1f6b1b3eb27b7aec
BLAKE2b-256 3dc371448d80a157433d939debd6a9862a4169912fbd4b0e1d7783fb23d5e3fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page