Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230310.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230310-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230310.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230310.tar.gz
Algorithm Hash digest
SHA256 3f4fb43ae55184aecba33a502a43ae61c8c7ed83d3671bc817f7cd08ef23b1c1
MD5 76e163702b672057772cba606b4310ea
BLAKE2b-256 12b5c442bd6c5526fe4f00add49b8a17f91069b8ff71dff015f3c16952fe3005

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230310-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230310-py3-none-any.whl
Algorithm Hash digest
SHA256 5c9975ff6e4cf56b04b551184a74e75ece1346527c5df239636d36265b85b873
MD5 3c440520015047dd75163f61c83baf58
BLAKE2b-256 ddb6602c2a83ab54f31a25d0a21a3288675155e704b8fc2738d3435ee3b36b44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page