Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230311.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230311-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230311.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230311.tar.gz
Algorithm Hash digest
SHA256 7b77771819d151a6c0f9cb2693bf7e94d60414780c394bda5e7db880a014761a
MD5 d5ccf6199b9030a054121feb3d8bf01d
BLAKE2b-256 c7fddb1789d03389c14d8dee7b17d020cc0a489e6395cb32dfb15a1753c69467

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230311-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230311-py3-none-any.whl
Algorithm Hash digest
SHA256 eb2934f4e63fd7e62fc347dd065bbb50234c9498fdacbfe190c4beca29b47129
MD5 68cbde972b434da5b8d7bf28a1b5ba9f
BLAKE2b-256 6fbb407c9ee07d9c868e6f8188f5e5251c4d7e47cbc612cf6d6485cfd5a43715

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page