Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230312.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230312-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230312.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230312.tar.gz
Algorithm Hash digest
SHA256 08e34fd9b66a1bf26565bc50df4a066a0632b7ad55c9c9ccd040e24c119ab72d
MD5 c3d6dfcba0b5433a6f090e4868151f86
BLAKE2b-256 7e2fa55d240044edae83a0732d758b7f3ac6af9e30a9af3554d3b0eb5449b2bd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230312-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230312-py3-none-any.whl
Algorithm Hash digest
SHA256 f95302e11268ed108d36994f3a293d41fec0ef39567101774071586d9702a011
MD5 72e0cb67f92700fb118ca4db8ffed288
BLAKE2b-256 fe42e087862de1150879fca956d867a50abf54210dec379546f4355e3cccad91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page