Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230313.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230313-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230313.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230313.tar.gz
Algorithm Hash digest
SHA256 481928122cb1dead3381daa38a61e69a432f2e0438e11344e3a8651adb26dcca
MD5 cc16903efbed3f7373dcf915651e3e05
BLAKE2b-256 4f47e10623a59a585f07685d3e509a58a3fe58ce752d37261294b87860b0fcf6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230313-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230313-py3-none-any.whl
Algorithm Hash digest
SHA256 686a8f4f0eb470e54e64d6dc60984922f2efba06d5ccb87f986a42adfc3b7077
MD5 aea75ad3fcf9cec7dff5dc1feca761c9
BLAKE2b-256 1735726d188708e30d45973969248bd8f05716f9c988ce8aa8e16f338f382b16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page