Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230314.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230314-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230314.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230314.tar.gz
Algorithm Hash digest
SHA256 a31b5f88891212b7c121673f49c4e0dbe9115643299473ac3e7730971550f5b3
MD5 8039aa13e1e9d25a585b5f184538fe22
BLAKE2b-256 f11795956b933be760cf2a18a1239ca1e6c750855b9c9d2281f28339545e2301

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230314-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230314-py3-none-any.whl
Algorithm Hash digest
SHA256 c7f138a16a34f54b462eb7e1ec31f0340c9778909506015ef257bcac03355bd8
MD5 b61c2fc04abf3ab1a1b92203acbde3ff
BLAKE2b-256 36019e977a16235b178a7dbaea57bd3397f81d58b82c121488c6b843fd460746

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page