Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230315.tar.gz (52.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230315-py3-none-any.whl (74.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230315.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230315.tar.gz
Algorithm Hash digest
SHA256 8d583815c1968e1af247dd81b459a17db5d868e78ef12a3e2f28370c95530e59
MD5 de05306fb1dc0c308e7e7970209508e1
BLAKE2b-256 f564758d87f8c90f4c08c25b1747ce1752b73628a346bfcd2d19c1a53353207a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230315-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230315-py3-none-any.whl
Algorithm Hash digest
SHA256 8837098257dd8e8185494b5310a6e6db7d5bf93d6983a51af19b9e6f5f3df775
MD5 018494bb0f0b69b4891591367b57ccef
BLAKE2b-256 17cb1c30476f64eb03a817533cbdaba88f4f661a242c936520473b9acf763e23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page