Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230316.tar.gz (52.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230316-py3-none-any.whl (74.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230316.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230316.tar.gz
Algorithm Hash digest
SHA256 ff646a9fd94053478f58665b09782d3c91a1217dea65d86f852ba54edb8ac9b6
MD5 cd478aacd11178f11124f80db61c44fc
BLAKE2b-256 4ffc143235e4d2609fc120d69e01b6c5393d8178889991a4ebd35229dc2b5d80

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230316-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230316-py3-none-any.whl
Algorithm Hash digest
SHA256 84673bce086a932c143d184ddb0d2d315cb22cb5083b9eacff7ba1a244891c68
MD5 348a34a297ec9af440d4d85e57d7d9e9
BLAKE2b-256 5da7c200cbe3443eb4092f1c7ee1e83567f09e3e4bb087c98abc21755f52ea87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page