Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230317.tar.gz (52.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230317-py3-none-any.whl (74.6 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230317.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230317.tar.gz
Algorithm Hash digest
SHA256 a1283e5848467938a556a941ff4c83d77c859b30b252a2f36963edde4407c897
MD5 11fb09051882894eae2f458be31dd4f6
BLAKE2b-256 f8bf32aa3728b97c84c30cfe5e7db7f2a9e8bcf04fbc946d4025bb9ed2eb418e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230317-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230317-py3-none-any.whl
Algorithm Hash digest
SHA256 2937cf2e3edbcec82a3e3d8dc800aa83c69c0f5a171fcc4fcc9f467fc080eb61
MD5 45756a012d9947dbfaf2aedc22a4a083
BLAKE2b-256 1430ba80ac3e009c5558036f433ce1d435ac9545ee2cf29ae7af91822e7ac194

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page