Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230318.tar.gz (53.2 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230318-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230318.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230318.tar.gz
Algorithm Hash digest
SHA256 2bc33f657a04e6462533e88fd8a039d030e967761765c535c362d90a9dcc6bf2
MD5 23e14aeda97a50fe8006213d463a9eeb
BLAKE2b-256 97c2ad0041887cf51a67e2d2e445fc184ffb6d07cf82bd531ddf8f77eb3538d2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230318-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230318-py3-none-any.whl
Algorithm Hash digest
SHA256 149613d6aa7c6ded18c57736d153388e95bcef276a299573358fef9e1fa9f08a
MD5 806f601bfe6c7dcb94bbaeb442447ff5
BLAKE2b-256 8886bdaa60788a81b49d9d6b5dd0ac0f356bb5430545ec22fcc271986a8fe909

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page