Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230319.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230319-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230319.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230319.tar.gz
Algorithm Hash digest
SHA256 a2c3172bafc622c0d29f0191fc9c69f42536b04ed8b28ec22071f727d4b77354
MD5 b4b209e6b426b17476a9ee6ec483c1aa
BLAKE2b-256 354f64ff0f5d0a6f1f0f3134da734b5dfa2270cee6168898cb7ad7ca031d5869

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230319-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230319-py3-none-any.whl
Algorithm Hash digest
SHA256 0f5da3596c1cd1916296a1e3d35cf19b5b340a7b1cc80b25d02c7128a5c6d9bf
MD5 27d583321cf1bc37dc383640cdc66d9f
BLAKE2b-256 0fabaa81cf479d0a2798680bb07573ea511c1f5cc72ef4a76c543ba16922057a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page