Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230320.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230320-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230320.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230320.tar.gz
Algorithm Hash digest
SHA256 409c8655fcf31734f01ef7d938dd72b0162159c2f8b3923062f2ffd7f8057039
MD5 d3c287a334555e01bf0a5daecaf0f47a
BLAKE2b-256 bb6e0dba06e7bf58d0662512accf34403dd45a14454a5dab65c8f2e6e2e45564

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230320-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230320-py3-none-any.whl
Algorithm Hash digest
SHA256 4a30e163bf1cac8d312e1a6104b0c72a7e42d8dcbe78d99af7e426cc2a316ed4
MD5 857c94c841998876bdb331dd5035d116
BLAKE2b-256 abdbb3ad592c8bf0f24650fd93b1306db107458f7651e824c1ccd0ca1bbf6612

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page