Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230321.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230321-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230321.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230321.tar.gz
Algorithm Hash digest
SHA256 fb01206c71fa51343a5b1a18e2771d1df1750a2a2dd2e73dd7efdfafa83e497b
MD5 b90d289395ee85ca511a66b80c2acdf2
BLAKE2b-256 8c5cceb5d842019629e9c2bfcef2c8a7616d1a0fa05367bbcdf089e6e34223c6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230321-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230321-py3-none-any.whl
Algorithm Hash digest
SHA256 b9bcf6bb1844b97b72a3e97c3c7bc9f9d2b0bd67420d5ae8ead6a75a0bf2bba4
MD5 ad83e4642f26d5c542440e72166c7cc7
BLAKE2b-256 4449543c1597156f0e991d5968fd91cc4583b5ac38d55381a8232596fc5ed3ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page