Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230322.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230322-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230322.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230322.tar.gz
Algorithm Hash digest
SHA256 e31833d0708bfa748481833b212979d1ed7600254608f9861e7f8eff5f7f61b5
MD5 e1c7312362352aaddfd36a09be4003b4
BLAKE2b-256 858cfa72a58d8cb8037d1d25e11768f812175d8c51acb226db82801ae44db6ac

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230322-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230322-py3-none-any.whl
Algorithm Hash digest
SHA256 f1a8d003a19b82072bf19bfbfc407577250c401206f262fc24163f90c714deaf
MD5 3e23b6d8d95f4edf7ca31e2065d65fcd
BLAKE2b-256 3554aae6d17ddffe4d30c57ca70dedee180eeddc5e1c56d68f9291ffbebae379

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page