Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230323.tar.gz (53.2 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230323-py3-none-any.whl (75.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230323.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230323.tar.gz
Algorithm Hash digest
SHA256 a28476db9b063f1f3d88956cad0aa127abef6974e7790acb7ca8ab275d6243cb
MD5 dfc161442b0e3d7ffed75ffe608fcd38
BLAKE2b-256 cbcd8dbe3470358e725f8e5a18400fa66d3e6a286b6efe8983a9c0fc1edc885c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230323-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230323-py3-none-any.whl
Algorithm Hash digest
SHA256 f497e9fc6061ce6c6436291176823598642246dca1ef72b6692a4dfe5703d872
MD5 4f31c9b2cc3090ea24d2d98a5049f6e3
BLAKE2b-256 75f1345677bb77add4583cadb5c1d2deb828fdcb8139044c2582b917202c39bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page