Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230324.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230324-py3-none-any.whl (75.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230324.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230324.tar.gz
Algorithm Hash digest
SHA256 f6ce638485f7dc1e252f5a8dd6d13f4dfa4f842383c4c2a107038c33553803aa
MD5 ecd3a7e9c5b17f46390e8cf29a31e5e5
BLAKE2b-256 27d972e3ab5b04100522760fc0fcb7ad298f55226b941517e4091d1f47cda582

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230324-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230324-py3-none-any.whl
Algorithm Hash digest
SHA256 de7bf06654884c7b550447448bc6dd7bfbdf37165e645006ca084394a66bc949
MD5 ae372fb8841af0eae45cd2b394fe353b
BLAKE2b-256 f26ec2b7a5811ef5114e04dd4fde7512929c8c4beedafa153f62e55d341e8d63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page