Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230325.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230325-py3-none-any.whl (75.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230325.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230325.tar.gz
Algorithm Hash digest
SHA256 7003881912feecf87b8503e005b2ab53f8b081839eb4cdf3b780eae8b7deb602
MD5 28607464fac0e1dd04fe9bfa33587b22
BLAKE2b-256 b77d7c685916a6cdc12b4f23e28ab6bd9cb95565f10d63cb3d79218511449c2b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230325-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230325-py3-none-any.whl
Algorithm Hash digest
SHA256 7daf108439b2ffad580f6b59a3c352b69f319e0fd38621a914697518db4e2f54
MD5 aaecf661f63dacbb93133cbe51cfb53e
BLAKE2b-256 cd39ab446ae537be1be3c6aa96ce61b17e6afd1ad4ba922ce62a93799f0d8e50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page