Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230326.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230326-py3-none-any.whl (75.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230326.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230326.tar.gz
Algorithm Hash digest
SHA256 8556eec9495ed2ae0679909208c48e3079a5a660a5e7d965e959d7dbc3653fc5
MD5 95619ad32434623dadf830fa820b9ab4
BLAKE2b-256 f54257aa0ded0e12736eec4c0e13be1ef3a855ee66b13e57aa36c7f149e861f0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230326-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230326-py3-none-any.whl
Algorithm Hash digest
SHA256 8fd58fa4ff530e2d4b27bbeadbc492a985e48c630ed187881764296dfe658598
MD5 64af0edf45b55e113a28cf5be8520702
BLAKE2b-256 385756c827c4fc7fbc48d92fba836e4935bd5f6ee640b4bc9dcbfa0871f1874a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page