Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230327.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230327-py3-none-any.whl (75.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230327.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230327.tar.gz
Algorithm Hash digest
SHA256 55c77eca45704dba62c1f5e581134bb774d350b3e670c857dcabcaefa9b8bed7
MD5 82f4e473bfc95c5ba5b903cdb9cceaeb
BLAKE2b-256 e3855851b91cf6ea94eca7d6ccabee7326491a382dca29517212223e0180559e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230327-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230327-py3-none-any.whl
Algorithm Hash digest
SHA256 6beb9bd6755b4756ef8816e6aa8609042919d73870905683eb102482a96caf28
MD5 5dfa90966c4833aec6ab1ff7df2e6fde
BLAKE2b-256 770793a390ea82d164b36723636c7d2d01359411b25ade91592437b23bb60ef7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page