Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230329.tar.gz (53.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230329-py3-none-any.whl (75.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230329.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230329.tar.gz
Algorithm Hash digest
SHA256 6c419782454f6bced6923b50651e3758141439934644fdfe6fe2cfdbaa8a3b76
MD5 093465ed133ad625c33c7ed565da6627
BLAKE2b-256 2aabd8f53ebc4d9a0422b7db07c1db445692555bbbe288cc276bb1c34be84e47

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230329-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230329-py3-none-any.whl
Algorithm Hash digest
SHA256 6bebe2fd508dedf1fe0de0d55dd0e27028a004b75a6c89e66e0f4370c6af5913
MD5 122b8011bbf24c5ebdc932f97b5099ed
BLAKE2b-256 63ee6d8c95700f9e925125cdb19013b682def7d4c9058b4c4da99fd0022fa457

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page