Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20221229.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20221229-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20221229.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221229.tar.gz
Algorithm Hash digest
SHA256 1132b6a1d208e2b3823f55a142c17227ee565a484e808b563d32aaeae098d963
MD5 1ba516fda142fe1cf80e8f552f0e6af4
BLAKE2b-256 c28a6fc589caa6ffc4e72d563988c837e3e28570bd3c438e16dbf91714566eb4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20221229-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221229-py3-none-any.whl
Algorithm Hash digest
SHA256 077b46a9fa747717af0e585178eee932c7824acd028f12f35a2d87a18311dd98
MD5 0ec27194a1f68564508bb3d9d2340bec
BLAKE2b-256 dfd6b38616595356979fe5cd82bfb46ea579197a4e526e4d59ed80e1a85daa21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page