Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20221230.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20221230-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20221230.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221230.tar.gz
Algorithm Hash digest
SHA256 1d09bfc30c91825165a004b406ab6ecb350a43baeddd6597de57b0c496176cb3
MD5 ed0825d1d974f0d8e030be9dde773919
BLAKE2b-256 1da23b197f7c283409a820bbd42c76bf14afe19b308479134ce7845b7761bac3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20221230-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221230-py3-none-any.whl
Algorithm Hash digest
SHA256 e6248cf84298a7a37a5fdd2cf320d610157c96677c3dd928137534b9ec69b3e2
MD5 659cb2c66dc3e38f9638059243a09a15
BLAKE2b-256 c4c34b16ddc8786b01877353aa0b1735f6c3b33cfa0e11d7648d4f452d4a7c1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page