Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20221231.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20221231-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20221231.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221231.tar.gz
Algorithm Hash digest
SHA256 515d958c4c8a9ab980ef1a97aa9cfe1f325fdde8b6055caa78cec0a6c2090476
MD5 d8dc2cb50ae64e4cf97d4944f6e9252f
BLAKE2b-256 2bae301b4296ffb14f003da3970c7dd31a1a3f4ba9f3cfd23188ccdf5e9c7d59

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20221231-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20221231-py3-none-any.whl
Algorithm Hash digest
SHA256 13c88cddecd64a4abb665170f3163e4283cdb02b443b96b7983f341475da9e97
MD5 663b4ea38e435defb956d57887aed402
BLAKE2b-256 752c60fbed6259e7b7066a70c40ade1a729e9c2fdef7321d0ad5a139f9f11b84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page