Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230101.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230101-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230101.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230101.tar.gz
Algorithm Hash digest
SHA256 5e0e888b4376eaf40227e935a431b5ee8e8d776f1c40f021f866716d8c415106
MD5 f296de5de054040a42be60f52dc8f2aa
BLAKE2b-256 0c335efcd95e6ecfbeaa296d11abcbdaf6e64e5da9116efe2314906a021dd3a8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230101-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230101-py3-none-any.whl
Algorithm Hash digest
SHA256 29af8c8f5de2b905074dcd65d6a7216251deacbaa002b7f8698f723d057aa185
MD5 64fd38b2e0f51e23905653648ced4655
BLAKE2b-256 a5f21cad5580ac14b78108c867224ae9972c354ed8c868d5850dd625ae80b406

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page