Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230102.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230102-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230102.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230102.tar.gz
Algorithm Hash digest
SHA256 402ca0b5ed1445a17cd57252b7097ae04f1524c4c5f6dfe4f9f7bf0c3dffc947
MD5 b02746c776c273f55ae9888d6ffe3053
BLAKE2b-256 74d5ab9cdc9bd0a739317ac29e41de1d45916875933d18bcc959f6fbad69e54f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230102-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230102-py3-none-any.whl
Algorithm Hash digest
SHA256 8ba27eb270571f4573859acb3a5056299524cbf14f902f099ee4060580a03012
MD5 e2d2939f662d448d40cd75a7b708037e
BLAKE2b-256 87579eabf9eb88c06d37178002de594ae7459379e8b96bdffd6c8ef6d7db6f69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page