Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230103.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230103-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230103.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230103.tar.gz
Algorithm Hash digest
SHA256 91727e57267660517896efe08f31159195beeb613983060239e33d2b6bfabc63
MD5 5c30ecbbfeb2fbdbb011ccc1a5b91b06
BLAKE2b-256 a88a204dda323316e75d961951b03983593b4a0bd755ebc4093849c470d60e91

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230103-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230103-py3-none-any.whl
Algorithm Hash digest
SHA256 62d7e4a3512c7543c885efd735c4f3a4b707d7dcb7f42dafb20ffd2e98e2b345
MD5 4b114d978ac98b8aa1a57119467cc714
BLAKE2b-256 86cf6d3009fc7af9890707db2959a0d66fc7e10e1c18facb2f074f17b5ab1fd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page