Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230104.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230104-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230104.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230104.tar.gz
Algorithm Hash digest
SHA256 7a1a159a25a4ca55f8e01706de283b3dc9b65b25b921f97f42318ea486920857
MD5 9fdd7d7e48305acd61ac9e761909c844
BLAKE2b-256 e1017142e965227806fddb089de58e787bb3259f33f97f924b582f886c033a0d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230104-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230104-py3-none-any.whl
Algorithm Hash digest
SHA256 74d1d3350f78abce4b906159a1c6eba8f1bdaa0d7e6f2a7652ed0970cbd3c5dd
MD5 cd3aa4d38b0248c0b1414c90636ee3c4
BLAKE2b-256 4ef9e9a803b2cb1cc54cc47fbc23d715fd01aced920d19cc9b5f390b9cace915

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page