Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230105.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230105-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230105.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230105.tar.gz
Algorithm Hash digest
SHA256 ce1d7b9d77c233d778f3388615c1c3daa22330c57abcde90594dc7ef8cc39068
MD5 e7156e0faa009d92902e720343c2a25a
BLAKE2b-256 8bae3c7c0a199d1d1336871c6f905e45af6a648a4c1e087b8f9e7150c8ac8519

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230105-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230105-py3-none-any.whl
Algorithm Hash digest
SHA256 a0b64a870ea60ba383dc67d30adb8ae96fe75b77ebef5d6c20cb9dbd0612b86b
MD5 7d61ac0f6776d8aee9a46981e4981442
BLAKE2b-256 c9ba2785cab529f4f580742985b1009dbddebed5dc0666d927831f13e012d208

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page