Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230106.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230106-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230106.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230106.tar.gz
Algorithm Hash digest
SHA256 64a385191b002b7174957602d2fd43d97c522b5bc781918635cd7d92534e2d4c
MD5 020105b5166c3c96cc1fd5ee87e95e2a
BLAKE2b-256 f8cbe32fb8fec38efaf2ffe2712f25adbd19feb5e676e50be9179092960f2dc7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230106-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230106-py3-none-any.whl
Algorithm Hash digest
SHA256 0d5c8c0930d2189456aa58a20f578321bbc7adde14bd93fb0b8bf52dd6943371
MD5 dcacccf105ac51f6a3bb3ee66a27c9e4
BLAKE2b-256 d642a8627c3f8d5c321470c2938ff619aff2f7809f0d520f3cc7c77e0a55c3ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page