Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230107.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230107-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230107.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230107.tar.gz
Algorithm Hash digest
SHA256 77c0f34b324060e19e47837496b319fbacf62f850b73dfb2dd29c8107c04a0a2
MD5 efd34491bfb55b9358cd223e985278a4
BLAKE2b-256 bb53ed4159e3495a940641e6c5c55ce0dd04e351d0e7017e9e7794e3dfd3070d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230107-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230107-py3-none-any.whl
Algorithm Hash digest
SHA256 41a609e54e90a456871ba7eebe108a38f6dd1ce5b36b5cbaa30061404d9aa9fe
MD5 b6c09dcbb0e031d9fabbbb42e9075d7f
BLAKE2b-256 0893a6cb56e24ae56fe00da278e8c2a1436c518b31a82f50715ed6d75647d910

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page