Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230108.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230108-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230108.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230108.tar.gz
Algorithm Hash digest
SHA256 6af4460c9bee2d3e70db74e569a3bd1be60c385c4e6050b819b89c199d13b29d
MD5 ea87150dc35a0679ae42d24853fa4248
BLAKE2b-256 4a4db1ca2d221681d13b6009ec2e48a2d4554ca393956be346764c85594b30d2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230108-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230108-py3-none-any.whl
Algorithm Hash digest
SHA256 d3671880bee2c07e6acc1eab477ec4fad661bd64e2f4c98d0d1663413445dff3
MD5 7fefba1c9b106565d56d1f73a5003e6d
BLAKE2b-256 b7281883973ec3915814c16eebce5fde9e758f7e33f4c8547b5787fbf3d23e9f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page