Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230109.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230109-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230109.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230109.tar.gz
Algorithm Hash digest
SHA256 7c5a2203979aa7bea74ff1f1c5ef99094c1ea05552aa0196cdb8b7550c7b224d
MD5 e1e7815098d53cd81724fd770fb2835c
BLAKE2b-256 5f3658e4cfd878f9407943fd0e6e1458c26b0ab6fc9f1f80712274bfe89304e8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230109-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230109-py3-none-any.whl
Algorithm Hash digest
SHA256 39799d340457955c8357551cc3da2fb8cc6e21575360f5656310639e820b08af
MD5 298fccf1e37c0989119420d7d71c96cd
BLAKE2b-256 db0558859fd75fc3aafd13b0b0be659909140019e9d6c90d689c2dab41884bbc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page