Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
train_data = 'train.csv'
test_data = 'test.csv'
predictor_init_args = {label='label'}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {train_data, time_limit=120}  # fit args you would pass to AG TabularPredictor
# Train
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH').fit(predictor_init_args, predictor_fit_args)
# Deploy the endpoint
cloud_predictor.deploy()
# Real-time inference with the endpoint
result = cloud_predictor.predict_real_time('test.csv')
print(result)
# Cleanup the endpoint
cloud_predictor.cleanup_deployment()
# Batch inference
cloud_predictor.predict('test.csv')  # results will be stored in s3 bucket
cloud_predictor.download_predict_results()  # download the results to your local machine

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1b20230110.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1b20230110-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1b20230110.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230110.tar.gz
Algorithm Hash digest
SHA256 9137e4a529f3818fb23a9f262bfc95adfdd4638d04df6edc43acd05ab641e6ea
MD5 a4ba4e408168752a0bb4263a538dd9ba
BLAKE2b-256 60bfbba0b92a362c19363b348eda8ff923b26b7b731a5597cac673a2b5eddc00

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1b20230110-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1b20230110-py3-none-any.whl
Algorithm Hash digest
SHA256 241b7cb439d3964bea6793f845b200d1d4fb40eb96a9bdb4d875c286de5d4d73
MD5 54e99b53da8b2b4ebfa5fee0651a3582
BLAKE2b-256 785ba8723686d64309a3172da1a9782daac295c569b79e8316011b2007a79982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page